INTERSECTION TYPES FOR COMBINATORY LOGIC

Mariangiola Dezani-Ciancaglini, Dip. Informatica, Corso Svizzera 185, Torino, Italy

Roger Hindley, Maths. Div., University College, Swansea SA2 8PP, U.K.

Dedicated to J.W.de Bakker in honour of his 25 years of work in semantics.

ABSTRACT.

Two different translations of the usual formulation of intersection types for λ -calculus into combinatory logic are proposed; in the first one the rule (\leq) is unchanged, while in the second one the rule (\leq) is replaced by three new rules and five axiom-schemes, which seem to be simpler than rule (\leq) itself.

INTRODUCTION.

Intersection types were introduced as a generalization of the type discipline of Church and Curry, mainly with the aim of describing the functional behaviour of all solvable λ -terms. The usual \rightarrow -based type-language for λ -calculus was extended by adding a constant ω as a universal type and a new connective \wedge for the intersection of two types. With suitable axioms and rules to assign types to λ -terms, this gave a system in which (i) the set of types given to a λ -term does not change under β -conversion, and (ii) the sets of normalizing and solvable λ -terms can be characterized very neatly by the types of their members. (CDV[1981] gives an introduction and motivation of \wedge and ω , and BCD[1983] gives a summary of all the most basic syntactic properties of the system.)

Moreover, in the new type-language we can build λ -models (filter models) in which the interpretation of a λ -term coincides with the set of all types that can be assigned to it. Filter models turn out to be a very rich class containing in particular each inverse-limit space, and have been widely used to study properties of D_{∞} - λ -models; see BCD[1983], CDHL[1983] and CDZ[1987].

More recently, intersection types have been introduced in the programming language Forsythe, which is a descendent of Algol 60, to simplify the structure of types; see R[1988].

Systems of combinators are designed to perform the same tasks as systems of λ -calculus, but without using bound variables. Curry's type discipline turns out to

be significantly simpler in combinatory logic than in λ -calculus. (For an introduction see HS[1986] Chapter 14.)

We propose here two different formulations of intersection types for combinatory logic. They are both essentially just translations of the λ -calculus system presented in BCD[1983], and have all the properties one would expect. However, there is at least one extra complication in combinatory logic. In the case of λ -calculus, the type-assignment rule (\leq) is well known to be replaceable by the simpler rule (η) (§1 below). But in combinatory logic some more care must be taken in choosing a rule to replace rule (\leq), and we do not know whether the second system we present below is the simplest possible (see §4).

For background λ -calculus, combinatory logic and type-theory, HS[1986] will be used as a basic reference.

1. INTERSECTION TYPES FOR λ-CALCULUS.

We introduce the intersection type-assignment system following BCD[1983], H[1982] and H[1988].

1.1 **DEFINITION.** (i) The set T of *intersection types* is inductively defined by:

```
\begin{split} & \phi_0, \phi_1, \ \ldots \in T \quad \text{(type-variables)} \\ & \omega \in T \qquad \text{(type-constant)} \\ & \sigma, \tau \in T \quad \Rightarrow \quad (\sigma \rightarrow \tau) \in T, \ (\sigma \land \tau) \in T. \end{split}
```

(ii) A (type-assignment) statement is of the form $M:\sigma$ with $\sigma \in T$ and M a λ -term, called its subject. A basis B is a set of statements with only distinct variables as subjects. If x does not occur in B, then "B, $x:\sigma$ " denotes $B \cup \{x:\sigma\}$.

On intersection types we define a pre-order relation which formalizes the subset relation and will be used in a type-assignment rule.

1.2 **DEFINITION.** The ≤ relation on intersection types is inductively defined by:

```
\begin{split} \tau \leq \tau, & \tau \leq \tau \wedge \tau\,, \\ \tau \leq \omega\,, & \sigma \wedge \tau \leq \sigma\,, & \sigma \wedge \tau \leq \tau\,, \\ \omega \leq \omega \rightarrow \omega\,, & (\sigma \rightarrow \rho) \wedge (\sigma \rightarrow \tau) \leq \sigma \rightarrow (\rho \wedge \tau)\,, \\ \\ \sigma \leq \rho \leq \tau & \Rightarrow \sigma \leq \tau\,, \\ \sigma \leq \sigma', & \tau \leq \tau' \Rightarrow \sigma \wedge \tau \leq \sigma' \wedge \tau'\,, \\ \sigma \leq \sigma', & \tau \leq \tau' \Rightarrow \sigma' \rightarrow \tau \leq \sigma \rightarrow \tau'\,. \end{split}
```

1.3 DEFINITION. (i) $TA_{\lambda}(\land,\omega,\leq)$ is the type assignment system defined by the following natural-deduction rules and axioms.

Axioms (ω): M: ω (one axiom for each λ -term M).

Rules:

$$[x:\sigma] \\ \vdots \\ (\to I) \xrightarrow{M:\tau} (*) \\ (\to E) \xrightarrow{M:\sigma \to \tau} N:\sigma \\ \hline MN:\tau \\ (\land I) \xrightarrow{M:\sigma} \frac{M:\sigma}{M:\sigma \land \tau} \qquad (\land E) \xrightarrow{M:\sigma \land \tau} \frac{M:\sigma \land \tau}{M:\tau} \\ M:\sigma \qquad \sigma \leq \tau$$

- (*) if x is not free in assumptions above $M:\tau$, other than $x:\sigma$.
- (ii) We write $\,B \vdash_{\lambda} M \mathpunct{:}\! \sigma \,$ if $\,M \mathpunct{:}\! \sigma \,$ is derivable from the basis B in this system.

The main syntactic property of this type system is the following theorem of invariance under β -equality and η -reduction. (For a proof see CDV[1981] Lemma 1 and Theorem 1, or H[1982] §5.)

- **1.5 THEOREM.** (i) $TA_{\lambda}(\land,\omega,\leq)$ is invariant under β -equality; that is, if $M=_{\beta}N$ and $B\vdash_{\lambda}M:\sigma$, then $B\vdash_{\lambda}N:\sigma$.
- (ii) $TA_{\lambda}(\land,\omega,\leq)$ is invariant under η -reduction; that is, if $z \notin FV(M)$ and z does not occur in B, and B, $z:\sigma \vdash_{\lambda} Mz:\tau$, then $B \vdash_{\lambda} M:(\sigma \to \tau)$.

The invariance under η -reduction allows a replacement of rule (\leq) which preserves type assignment, as follows.

1.6 DEFINITION. (i) Let $TA_{\lambda}(\land,\omega,\eta)$ be the type-assignment system obtained from $TA_{\lambda}(\land,\omega,\leq)$ by replacing rule (\leq) by

$$(\eta) \quad \frac{(\lambda x.Mx) : \sigma}{M : \sigma} \quad \text{(if x is not free in M)}$$

(ii) Let $B \vdash_{\lambda \eta} M:\sigma$ denote derivability in the resulting system.

1.7 **THEOREM.**
$$TA_{\lambda}(\land,\omega,\leq)$$
 and $TA_{\lambda}(\land,\omega,\eta)$ are equivalent; that is,
$$B \vdash_{\lambda} M : \sigma \iff B \vdash_{\lambda\eta} M : \sigma.$$

This equivalence can be proved directly fairly easily, or by using BCD[1983] (in particular Lemma 4.2, Remark 2.10, and the remark just before 4.3).

2. CORRESPONDENCE BETWEEN \(\lambda\) AND CL.

The reader is assumed to know at least the basic definitions of combinatory logic (see Chapter 2 of HS[1986]). The atomic combinators are assumed here to be S, K, I.

- 2.1 **DEFINITION** (Abstraction in Combinatory Logic).
 - (i) A functional (fnl) term is any of \$, \$X, \$XY, K, KX, I (for any X,Y).
- (ii) We present four alternative definitions for $\lambda^*x.X.$ (The second one has been discussed in HS[1986] §§9.34-35, and the other three are common in the literature. Note that the definition of λ^β uses λ^η .)
 - λ^{η} : (a) $\lambda^{\eta} x. Y \equiv KY \text{ if } x \notin FV(Y)$,
 - (b) $\lambda \eta x.x \equiv 1$,
 - (c) $\lambda^{\eta} x.Ux \equiv U \text{ if } x \notin FV(U)$,
 - (f) $\lambda \eta x.UV \equiv \$(\lambda \eta x.U)(\lambda \eta x.V)$ if (a)-(c) do not apply.
 - λ^{β} : (a), (b) as above,
 - (c_B) $\lambda^{\beta}x.Ux \equiv U \text{ if } x \notin FV(U) \text{ and } U \text{ is fnl,}$
 - $(f_\beta) \ \lambda^\beta x. UV \equiv \$(\lambda^\eta \ x. \ U)(\lambda^\eta \ x. V) \ \ if (a) \text{-}(c_\beta) \ do \ not \ apply.$

 λ^{abf} : (a), (b) as above, and (f) used when (a) and (b) do not apply.

$$\lambda^{\text{fab}}$$
: (f) $\lambda^{\text{fab}} x.UV \equiv \$(\lambda^{\text{fab}} x.U)(\lambda^{\text{fab}} x.V)$,
(a) $\lambda^{\text{fab}} x.y \equiv Ky$ if y is an atom distinct from x,
(b) $\lambda^{\text{fab}} x.x \equiv I$.

2.2 DEFINITION (*H-transformations*). Each abstraction determines an H-mapping from λ -calculus to combinatory logic: $(\lambda x.M)_H \equiv \lambda^* x.(M_H)$. (Details are in HS[1986] Chapter 9.) We call these mappings H_B , H_n , H_{abf} , H_{fab} .

Let X_{λ} denote the λ -term associated in the standard way with the CL-term X, and let $=_{CB}$ denote combinatory β -equality (i.e. $X=_{CB}Y \iff X_{\lambda}=_{\beta}Y_{\lambda}$).

2.3 LEMMA. (i) For all CL-terms X:

$$\begin{split} X_{\lambda H\eta} &\equiv X \text{, in particular } \$_{\lambda H\eta} \equiv \$ \text{;} \\ X_{\lambda H\beta} &\equiv X \text{, in particular } \$_{\lambda H\beta} \equiv \$ \text{;} \\ X_{\lambda Habf} &=_{c\beta} X \text{ and } \$_{\lambda Habf} \not\equiv \$ \text{;} \\ X_{\lambda Hfab} &=_{c\beta} X \text{ and } \$_{\lambda Hfab} \not\equiv \$ \text{.} \end{split}$$

(ii) For all λ -terms M and for H_{β} or H_{abf} or H_{fab} : $M_{\mbox{$H$}\lambda}$ = $_{\mbox{$\beta$}}$ M.

The proof for H_{abf} is in HS[1986] §§9.20-28, and the others are similar; see HS[1986] §9.35 for hints on the proof for H_B .

3. INTERSECTION TYPES FOR CL-TERMS.

We introduce now an assignment of intersection types to CL-terms which can be viewed as a translation of $TA_{\lambda}(\land,\omega,\leq)$ into combinatory logic. Its relation to $TA_{\lambda}(\land,\omega,\leq)$ will be precisely stated in Theorem 3.3.

In this section, type-assignment statements have form $X:\sigma$ where X is a CL-term. Bases are sets $\{x_1:\sigma_1,x_2:\sigma_2,...\}$ with $x_1,x_2,...$ distinct, as usual.

- **3.1 DEFINITION**. (i) $TA_{CL\beta}(\land,\omega,\leq)$ is the system whose rules are $(\rightarrow E)$, $(\land I)$, $(\land E)$, (\le) , and whose axiom-schemes are (ω) and
 - $(\rightarrow I)$ $I: \sigma \rightarrow \sigma$,
 - $(\rightarrow K)$ $K: \sigma \rightarrow \tau \rightarrow \sigma$,
 - $(\rightarrow S)$ S: $(\sigma \rightarrow \tau \rightarrow \rho) \rightarrow (\sigma \rightarrow \tau) \rightarrow \sigma \rightarrow \rho$.
 - (ii) We write $B \vdash_{CL} X: \sigma$ if $X: \sigma$ is derivable from the basis B in this system.

3.2 LEMMA. (i) B, $x:\sigma \vdash_{CL} x:\tau \Rightarrow \sigma \leq \tau$.

(ii) Let λ^* be any of λ^{η} , λ^{β} , λ^{abf} , λ^{fab} . Then

$$B,\,x{:}\sigma \vdash_{CL} Y{:}\tau \quad \Rightarrow \quad B \vdash_{CL} (\lambda^*x.Y){:}\sigma \to \tau.$$

Proof. (i) By an easy induction on deductions.

(ii) Induction on the deduction of $Y:\tau$. We will prove the result for all four λ^* 's at once, and will use the induction hypothesis for λ^η in proving the induction step for λ^β .

Case 1: Y: τ is x: σ . \therefore Y = x, $\therefore \lambda^* x$. Y = 1. But 1: $\sigma \rightarrow \sigma$ is an axiom.

Case 2: Y: τ is either in B, or is an \$, **K** or I axiom, or an ω -axiom with Y an atom $\not\equiv x$. \therefore Y is an atom and $x \notin FV(Y)$, so $\lambda^*x.Y \equiv KY$. Hence, by the axiom $K: \tau \to \sigma \to \tau$ and rule $(\to E)$, $B \vdash_{CL} KY: \sigma \to \tau$.

<u>Case 3</u>: Y: τ is an ω -axiom. $\tau \equiv \omega$. Now $(\lambda^*x.Y)$: ω is an ω -axiom. And, since $\sigma \leq \omega$, we have $\omega \leq \omega \to \omega \leq \sigma \to \omega$. Hence $(\lambda^*x.Y)$: $\sigma \to \omega$ by rule (\leq) .

Case 4: The last step in the deduction of $Y:\tau$ is (\leq) or $(\wedge E)$:

3 x:
$$\sigma$$

$$\vdots$$

$$\frac{Y:\rho}{Y:\tau} (\rho \leq \tau)$$

Then $(\sigma \rightarrow \rho) \leq (\sigma \rightarrow \tau)$, so we use the induction hypothesis and rule (\leq) .

Case 5: Rule (AI):

$$\frac{Y:\tau_1 \qquad Y:\tau_2}{Y:(\tau_1\wedge\tau_2)} \qquad (\tau\equiv\tau_1\wedge\tau_2)$$

By induction hypothesis, $B \vdash_{CL} (\lambda^*x.Y): \sigma \to \tau_i$ for i = 1, 2. But $(\sigma \to \tau_1) \land (\sigma \to \tau_2) \le \sigma \to (\tau_1 \land \tau_2)$, so rules $(\land I)$ and (\le) give the result.

Case 6: Rule (\rightarrow E): Say Y \equiv UV, and we have:

В	x:σ	В	x:σ	
	•	•	•	
	•	•	•	
	•		•	
Ū:ρ→τ		,	 	
		UV:τ .		

Subcase 6a: $x \notin FV(UV)$ and $\lambda^*x.(UV) \equiv K(UV)$. Since $x \notin FV(UV)$, x cannot occur in the given deduction. Hence $B \vdash_{CL} UV : \tau$. So by the axiom $K : \tau \to \sigma \to \tau$ and rule $(\to E)$, $B \vdash_{CL} K(UV) : \sigma \to \tau$.

Subcase 6c: $V \equiv x$, $x \notin FV(U)$, and $\lambda^*x.(UV) \equiv U$. Since $B, x:\sigma \vdash x:\rho$, we have $\sigma \leq \rho$ by (i). $\therefore (\rho \rightarrow \tau) \leq (\sigma \rightarrow \tau)$. But $B \vdash_{CL} U:(\rho \rightarrow \tau)$ since $x \notin FV(U)$; hence by (\leq), $B \vdash_{CL} U:(\sigma \rightarrow \tau)$.

Subcase 6f: $\lambda^*x.(UV) \equiv \$(\lambda^*'x.U)(\lambda^*'x.V)$ (where λ^*' is λ^* if λ^* is λ^{η} or λ^{abf} or λ^{fab} , but $\lambda^{*'}$ is λ^{η} if λ^* is λ^{β}). By induction hypothesis for $\lambda^{*'}$, we have $B \vdash_{CL} (\lambda^{*'}x.U): \sigma \rightarrow \rho \rightarrow \tau$, $B \vdash_{CL} (\lambda^{*'}x.V): \sigma \rightarrow \rho$. Hence the result, by an \$-axiom and $(\rightarrow E)$. \square

3.3 THEOREM. (i) $B \vdash_{CL} X: \tau \iff B \vdash_{\lambda} X_{\lambda}: \tau$.

- (ii) $B \vdash_{\lambda} M:\tau \Rightarrow B \vdash_{CL} M_H:\tau \text{ for } H_{\eta}, H_{\beta}, H_{abf}, H_{fab}.$
- (iii) For H_{β} , H_{abf} , H_{fab} , we also have the converse of (ii).
- Proof. We prove all parts together. (i) "⇒" is trivial.
- (ii): Induction on \vdash_{λ} . The only difficult case is rule (\rightarrow I), which comes by Lemma 3.2.
- (iii): Let H be any of H_{β} , H_{abf} , H_{fab} , and let $B \vdash_{CL} M_H: \tau$. \therefore by (i)" \Rightarrow ", $B \vdash_{\lambda} M_{H\lambda}: \tau$. But $M_{H\lambda} = M_{\beta} M_{\beta}$ by Lemma 2.3(ii). \therefore by Theorem 1.5(i), $M \vdash_{\lambda} M: \tau$.
- (i)" \Leftarrow ": Let $B \vdash_{\lambda} X_{\lambda}$: τ . Then $B \vdash_{CL} X_{\lambda H\beta}$: τ by (ii). $\therefore B \vdash_{CL} X$: τ because $X_{\lambda H\beta} \equiv X$ by Lemma 2.3(i). \square

Note that Theorem 3.3(iii) does not hold for H_{η} . A counter-example is $M \equiv \lambda xy.xy$; we have $M_{H_{\eta}} \equiv I$ which has type $\phi \rightarrow \phi$ in the CL-system (ϕ being a type-variable), but it can be shown that M does not have this type in the λ -system.

The following theorem shows that $TA_{CL\beta}(\land,\omega,\leq)$ is invariant under β -equality and η -reduction.

- **3.4 THEOREM.** (i) If $B \vdash_{CL} X:\tau$ and $Y =_{CB} X$, then $B \vdash_{CL} Y:\tau$.
 - (ii) If B, $z:\sigma \vdash_{CL} Yz:\tau$ and $z \notin FV(Y)$ and z is not in B, then $B \vdash_{CL} Y:(\sigma \to \tau)$.

Proof. (i): By 3.3(i), (iii) and 1.5(i).

(ii) Induction on the deduction of $Yz:\tau$, as follows.

Axioms: Yz: τ cannot be an **S**, K, I-axiom. The only possibility is an ω -axiom, with $\tau \equiv \omega$. But $\omega \leq \omega \to \omega \leq \sigma \to \omega$ (since $\sigma \leq \omega$), so we have

$$(ω)$$
-ax
 $Y:ω$
 $(ω ≤ σ → ω)$
 $Y:(σ → ω)$.

Rule (\rightarrow E): Say we have, for some ρ ,

$$\frac{Y:\rho\to\tau\qquad z:\rho}{Yz:\tau.}$$

But $z:\rho$ is deduced from B, $z:\sigma$ and z does not occur in B. Hence $\sigma \le \rho$ by 3.2(i). $\therefore (\rho \to \tau) \le (\sigma \to \tau)$, so by $Y:(\rho \to \tau)$ and rule (\le) , $B \vdash_{CL} Y:(\sigma \to \tau)$.

Rule (\leq) or $(\wedge E)$: Say we have

$$\frac{Yz:\rho}{Yz:\tau} (\rho \leq \tau)$$

By induction hypothesis, $B \vdash_{CL} Y : (\sigma \rightarrow \rho)$. Hence, by (\leq) , $B \vdash_{CL} Y : (\sigma \rightarrow \tau)$.

Rule (\land I): Say $\tau \equiv (\tau_1 \land \tau_2)$ and we have

By induction hypothesis, $B \vdash_{CL} Y: (\sigma \rightarrow \tau_i)$, i = 1, 2. \therefore by (\land I) and (\le), since $(\sigma \rightarrow \tau_1) \land (\sigma \rightarrow \tau_2) \le \sigma \rightarrow (\tau_1 \land \tau_2)$, we have $B \vdash_{CL} Y: \sigma \rightarrow (\tau_1 \land \tau_2)$.

3.5 NOTE. Following H[1982], let us define the set NTS of Normal Types to be the set of all types σ such that: either $\sigma \equiv \omega$ or $\sigma \equiv \sigma_1 \wedge ... \wedge \sigma_n$ with some bracketing and with each σ_i having the form $\sigma_{i,1} \rightarrow ... \rightarrow \sigma_{i,m(i)} \rightarrow \phi_i$. Normal types corresponded closely to the types in CDV[1981], which were slightly more restricted than those in BCD[1983] and later papers, including this one. In H[1982] it was proved that the restriction was trivial, in the sense that every deduction $B \vdash_{\lambda} M : \tau$ could be paralleled by a deduction $B^* \vdash_{\lambda} M : \tau^*$ containing only normal types, where the map *: $T \rightarrow NTS$ applied to a type gave its "normal form". But in CL the

restriction seems not to be so trivial. For example, in CL there is a problem with the axiom $\mathbf{I}:(\sigma\wedge\tau)\to(\sigma\wedge\tau)$. The type in this is not normal, and the nearest normal type to it is $((\sigma\wedge\tau)\to\sigma)\wedge((\sigma\wedge\tau)\to\tau)$. So if types were restricted to being normal, quite a complicated form of the axiom scheme for \mathbf{I} would be needed to give a reasonable equivalence to the λ -system. Similarly for \mathbf{S} and \mathbf{K} .

4. REPLACING RULE (≤).

In this section we propose an alternative formulation of intersection type-assignment to CL-terms in which rule (\leq) has been replaced by something simpler. Let $B \equiv S(KS)K$ and $B' \equiv SB(KI)$.

4.1 DEFINITION. (i) $TA_{CL\beta}(\land,\omega,\eta)$ is the system for CL-terms whose axiomschemes are (ω) , $(\rightarrow I)$, $(\rightarrow K)$, $(\rightarrow S)$ and

(I₁) I:
$$\sigma \rightarrow \omega$$

(I₂) I: $\omega \rightarrow (\omega \rightarrow \omega)$

(I₃) I:
$$(\sigma_1 \wedge \sigma_2) \rightarrow \sigma_i$$

1:
$$((\sigma \to \tau) \land (\sigma \to \rho)) \to (\sigma \to (\tau \land \rho))$$

(i = 1,2)

and whose rules are $(\rightarrow E)$, $(\land I)$, $(\land E)$ and

 (I_A)

$$(I_5)$$
 $\frac{IX:\sigma}{X:\sigma}$ (η_1) $\frac{BI:\sigma}{I:\sigma}$ (η_2) $\frac{B'I:\sigma}{I:\sigma}$

(ii) We write $B \vdash_{CL\eta} X:\sigma$ if $X:\sigma$ is derivable from the basis B in this system.

We shall prove that $TA_{CLB}(\land,\omega,\leq)$ and $TA_{CLB}(\land,\omega,\eta)$ are equivalent.

4.2 LEMMA. If $\sigma \leq \sigma'$, then $\vdash_{CL\eta} \mathbf{l}: \sigma \rightarrow \sigma'$.

<u>Proof.</u> Induction on the proof of $\sigma \le \sigma'$. We consider only the non-trivial cases. Axiom $\sigma \le \sigma \land \sigma$.

$$(1) - ax \qquad (1) - ax$$

Transitivity: Suppose $1:\sigma \to \tau$ and $1:\tau \to \rho$. Deduce $1:\sigma \to \rho$ thus:

$$\frac{\mathbf{B}: (\tau \to \rho) \to (\sigma \to \tau) \to \sigma \to \rho}{\frac{\mathbf{B}\mathbf{I}: (\sigma \to \tau) \to \sigma \to \rho}{\mathbf{I}: (\sigma \to \tau) \to \sigma \to \rho}} \xrightarrow{(\eta_{\underline{1}})} (\to \underline{E})}$$

$$\frac{\mathbf{II}: \sigma \to \rho}{\mathbf{II}: \sigma \to \rho} \xrightarrow{(1_{\underline{5}})} (\to \underline{E})$$

Replacement in \wedge . Assume $1:\sigma \to \sigma'$ and $1:\tau \to \tau'$. Deduce $1:(\sigma \wedge \tau) \to (\sigma' \wedge \tau')$ thus:

$$\frac{B:(\sigma \rightarrow \sigma') \rightarrow ((\sigma \land \tau) \rightarrow \sigma) \rightarrow (\sigma \land \tau) \rightarrow \sigma'}{\frac{B!:((\sigma \land \tau) \rightarrow \sigma) \rightarrow (\sigma \land \tau) \rightarrow \sigma'}{1:((\sigma \land \tau) \rightarrow \sigma) \rightarrow (\sigma \land \tau) \rightarrow \sigma'}} (\eta_1) \qquad \begin{matrix} (1_3)\text{-ax} \\ \vdots (\sigma \land \tau) \rightarrow \sigma \end{matrix} \\ \begin{matrix} (1_4)\text{-ax} \\ \vdots (\sigma \land \tau) \rightarrow \sigma' \land ((\sigma \land \tau) \rightarrow \tau') \rightarrow (\sigma \land \tau) \rightarrow (\sigma' \land \tau') \end{matrix}} \begin{matrix} (1_5) \\ \vdots ((\sigma \land \tau) \rightarrow \sigma') \land ((\sigma \land \tau) \rightarrow \tau') \rightarrow (\sigma' \land \tau') \end{matrix}} \begin{matrix} (1_5) \\ \vdots ((\sigma \land \tau) \rightarrow \sigma') \land ((\sigma \land \tau) \rightarrow \tau') \rightarrow ((\sigma \land \tau) \rightarrow \tau') \end{matrix}} \begin{matrix} (AI) \\ \vdots ((\sigma \land \tau) \rightarrow \sigma') \land ((\sigma \land \tau) \rightarrow \tau') \rightarrow ((\sigma \land \tau) \rightarrow \tau') \end{matrix}} \begin{matrix} (AI) \\ \vdots ((\sigma \land \tau) \rightarrow (\sigma' \land \tau') \rightarrow ((\sigma \land \tau) \rightarrow \tau') \rightarrow ((\sigma \land \tau) \rightarrow \tau') \rightarrow ((\sigma \land \tau) \rightarrow \tau') \end{matrix}} \begin{matrix} (AI) \\ \vdots ((\sigma \land \tau) \rightarrow (\sigma' \land \tau') \rightarrow ((\sigma \land \tau) \rightarrow \tau')$$

Replacement in \rightarrow . Assume $\mathbf{I}: \sigma \rightarrow \sigma'$ and $\mathbf{I}: \tau \rightarrow \tau'$. Deduce $\mathbf{I}: (\sigma' \rightarrow \tau) \rightarrow (\sigma \rightarrow \tau')$ as follows. In this deduction, let $\xi \equiv (\sigma \rightarrow \tau)$, $\eta \equiv (\sigma \rightarrow \tau')$, and $\zeta \equiv (\sigma' \rightarrow \tau)$.

$$\frac{B:(\tau \to \tau') \to (\sigma \to \tau) \to \sigma \to \tau' \quad I:\tau \to \tau'}{BI:(\sigma \to \tau) \to \sigma \to \tau'} \xrightarrow{(\tau \to \tau')} (\to E)$$

$$\frac{B:(\xi \to \eta) \to (\xi \to \xi) \to \xi \to \eta}{I:(\xi \to \xi) \to \xi \to \eta} \xrightarrow{(\tau \to \xi)} (\to E)$$

$$\frac{BI:(\zeta \to \xi) \to \xi \to \eta}{I:(\zeta \to \xi) \to \xi \to \eta} \xrightarrow{(\eta \to \xi)} (\to E)$$

$$\frac{BI:(\zeta \to \xi) \to \xi \to \eta}{I:(\zeta \to \xi) \to \xi \to \eta} \xrightarrow{(\eta \to \xi)} (\to E)$$

$$\frac{II:(\xi \to \eta)}{I:(\xi \to \eta)} \xrightarrow{(I \to \xi)} (\to E)$$

4.3 THEOREM. $B \vdash_{CL} X: \sigma \iff B \vdash_{CL\eta} X: \sigma$.

<u>Proof.</u> " \Rightarrow ": The only thing to show is that (\leq) is an admissible rule in $TA_{CL\beta}(\land.\omega,\eta)$; that is, to show that if $B \vdash_{CL\eta} X:\sigma$ and $\sigma \leq \tau$, then $B \vdash_{CL\eta} X:\tau$. By Lemma 4.2, $\vdash_{CL\eta} I:\sigma \to \tau$. Then we can deduce

$$\frac{1:\sigma\to\tau\qquad X:\sigma}{\frac{1X:\tau}{X:\tau}} (\to E)$$

"←": Immediate from 3.4(ii).

4.4 NOTE. Rule (\leq) can also be replaced by a strengthened I-axiom-scheme saying $I:\sigma\to\tau$ ($\sigma\leq\tau$), and an I-rule:

Using this axiom-scheme and rule, we get $X:\sigma \vdash X:\tau$ when $\sigma \leq \tau$, as follows:

$$\frac{\mathbf{l}{:}\sigma \to \tau \qquad \qquad X{:}\sigma}{\frac{\mathbf{l}X{:}\tau}{X{:}\tau}} (\to E)$$

Conversely, the axiom and I-rule are easily proved admissible in $TA_{CLB}(\land,\omega,\leq)$.

REFERENCES.

- BCD[1983] Barendregt, H.P., Coppo, M., Dezani-Ciancaglini, M., A filter lambda model and the completeness of type assignment, J. Symbolic Logic 48, 931-940.
- CDHL[1983] Coppo, M., Dezani-Ciancaglini, M., Honsell, F., Longo, G., Extended type structures and filter lambda models, in *Logic Colloquium '82*, ed. G. Longo et al., North-Holland Co., 241-262.
- CDV[1981] Coppo, M., Dezani-Ciancaglini, M., Venneri, B., Functional characters of solvable terms, Zeit. Math. Logik 27, 45-58.
- CDZ[1987] Coppo, M., Dezani-Ciancaglini, M., Zacchi, M., Type-theories, normal forms and D_∞-λ-models, Information and Computation 72, 85-116.
- H[1982] Hindley, J.R., The simple semantics for Coppo-Dezani-Sallé types, LNCS 137, Springer-Verlag, 212-226.
- H[1988] Hindley, J. R., Coppo-Dezani-Sallé types in lambda-calculus, an introduction, MS, Maths. Divn., University College, Swansea SA2 8PP, U.K.
- HS[1986] Hindley, J.R., Seldin, J.P., Introduction to combinators and λ -calculus, Cambridge University Press.
- R[1988] Reynolds, J.C., Preliminary design of the programming language Forsythe, Report CMU-CS-88-159, Computer Science Dept., Carnegie-Mellon University, Schenley Park, Pittsburgh, U.S.A.