181

INTERSECTION TYPES FOR COMBINATORY LOGIC

Mariangiola Dezani-Ciancaglini,
Dip. Informatica, Corso Svizzera 185,
Torino, Italy

Roger Hindley,
Maths. Div., University College,
Swansea SA2 8PP, U.K.

Dedicated to J. W.de Bakker in honour of his 25 years of work in
semantics.

ABSTRACT.

Two different translations of the usual formulation of intersection types for
A-calculus into combinatory logic are proposed; in the first one the rule (<) is
unchanged, while in the second one the rule (<) is replaced by three new rules and
five axiom-schemes, which seem to be simpler than rule (<) itself.

INTRODUCTION.

Intersection types were introduced as a generalization of the type discipline of
Church and Curry, mainly with the aim of describing the functional behaviour of all
solvable A-terms. The usual -»-based type-language for A-calculus was extended by
adding a constant @ as a universal type and a new connective A for the intersection
of two types. With suitable axioms and rules to assign types to A-terms, this gave a
system in which (i) the set of types given to a A-term does not change under
B-conversion, and (ii) the sets of normalizing and solvable A-terms can be
characterized very neatly by the types of their members. (CDVI[1981] gives an
introduction and motivation of A and @, and BCD[1983] gives a summary of all the
most basic syntactic properties of the system.)

Moreover, in the new type-language we can build A-models (filter models) in
which the interpretation of a A-term coincides with the set af all types that can be
assigned to it. Filter models turn out to be a very rich class containing in particular
each inverse-limit space, and have been widely used to study properties of
Do -A-models; see BCD[1983], CDHL[1983] and CDZ[19871.

More recently, intersection types have been introduced in the programming
language Forsythe, which is a descendent of Algol 60, to simplify the structure of
types; see R[1988].

Systems of combinators are designed to perform the same tasks as systems of
A-calculus, but without using bound variables. Curry's type discipline turns out to

182

be significantly simpler in combinatory logic than in A-calculus. (For an
introduction see HS[1986] Chapter 14.)

We propose here two different formulations of intersection types for combinatory
logic. They are both essentially just translations of the A-calculus system presented
in BCD[1983], and have all the properties one would expect. However, there is at
least one extra complication in combinatory logic. In the case of A-calculus, the
type-assignment rule (<) is well known to be replaceable by the simpler rule (1)
(§1 below). But in combinatory logic some more care must be taken in choosing a
rule to replace rule (<), and we do not know whether the second system we present
below is the simplest possible (see §4).

For background A-calculus, combinatory logic and type-theory, HS[1986] will
be used as a basic reference.

1. INTERSECTION TYPES FOR A-CALCULUS.

We introduce the intersection type-assigment system following BCD[1983],
H[1982] and H[1988].

1.1 DEFINITION. (i) The set T of intersection types is inductively defined by:
¢9, ¢1, ... € T (type-variables)
weT (type-constant)
g,TeT = (o-1)e T, (car)eT.
(ii) A (type-assignment) statement is of the form M:o withoc € Tand M a
A-term, called its subject. A basisB is a set of statements with only distinct
variables as subjects. If x does not occur in B, then "B, x:0" denotes Bu{x:a}.

On intersection types we define a pre-order relation which formalizes the subset
relation and will be used in a type-assignment rule.

1.2 DEFINITION. The < relation on intersection types is inductively defined by:

1T, T < TAT,

T<W, GAT <O, OATEST,
WS-, (0-»pIAM(0-1T) < 0-(pAT),
o<psT = 0xT,

<0, TST = OAT <C'AT',
<G, 1T = 0'51<0-17".

183

1.3 DEFINITION. (i) TAj;(A,0,<) is the type assignment system defined by the
following natural-deduction rules and axioms.

Axioms (w): M:o (one axiom for each A-term M).
Rules:
[x:0]
Mzr Moot N:o
oD —m — ™ (-E)
Ax.MooT1 MN:t
M:o M:t M:o At M:oat
) — (AE)
M:oat M:o M:t
M:o o<t
(2)
M:t

(*) if x is not free in assumptions above M:t, other than x:o.

(ii) We write B}y M:o if M:o is derivable from the basis B in this
system.

The main syntactic property of this type system is the following theorem of
invariance under B-equality and n-reduction. (For a proof see CDV[1981] Lemma
1 and Theorem 1, or H[1982] §5.)

1.5 THEOREM. (i) TAj;(A,0,s) isinvariant under B-equality ; thatis, if M =g
N and BF) M:o, then B3 N:o.

(ii) TA)(A,0,<) isinvariant under n-reduction; thatis, if z ¢ FV(M) andz
does not occur inB, and B, z:0) Mz:t, then B3 M:(o-»1).

The invariance under n -reduction allows a replacement of rule (<) which
preserves type assignment, as follows.

184

1.6 DEFINITION. (i) LetTA;(A,»,n) be the type-assigment system obtained
from TA; (A,w,<) by replacing rule (<) by

(Ax.Mx):0
(n) ———— (ifxis notfree in M)
Mo .

(ii) Let B3y M:o denote derivability in the resulting system.

1.7 THEOREM. TA;(A,w,<) and TA;(A,0,n) are equivalent; that is,
BHyMioc & Bl Mo,

This equivalence can be proved directly fairly easily, or by using BCD[1983] (in
particular Lemma 4.2, Remark 2.10, and the remark just before 4.3).

2. CORRESPONDENCE BETWEEN A AND CL.

The reader is assumned to know at least the basic definitions of combinatory
logic (see Chapter 2 of HS[1986]). The atomic combinators are assumed here to
be s, K, 1.

2.1 DEFINITION (Abstraction in Combinatory Logic).
(i) A functional (fnl) term is any of $, $X, SXY, K, KX, 1 (for any X,Y).
(ii) We present four alternative definitions for A*x.X. (The second one has
been discussed in HS[1986] §§9.34-35, and the other three are common in the
literature. Note that the definition of AB uses AN.)

AN (a) AxY
(b) ANMx.x 1,
(c) AMx.Ux= U if x¢ FV(U),
() AMx.UV= $(ANx.U)(ANx.V) if(a)-(c) do not apply.

KY if x ¢ FV(Y),

AB: (a), (b) asabove,
(cg) ABx.Ux = U ifx¢ FV(U) and U is fl,
(fp) ABx.UV= $(ANx U)(ANx.V) if (a)-(c) donot apply.

A3bl : (a), (b) as above, and () used when (a) and (b) do not apply.

185

Afab . () Afabx UV = $(Afabx U)(afabx.V),
(a) Afabxy = Ky if yisan atom distinct from x,
(b) Afabx.x = I

2.2 DEFINITION (H-transformations). Each abstraction determines an H-
mapping from A-calculus to combinatory logic: (Ax.M)y =A*x.(My). (Details are
in HS[1986] Chapter 9.) We call these mappings Hg, Hy, Habp Hiap,.

Let X3 denote the A-term associated in the standard way with the CL-term X,
and let =¢ denote combinatory B-equality (i.e. X=¢pY < Xp=pY3).

2.3 LEMMA. (i) For all CL-terms X:
XAHn =X, inparticular S)Hn =$;
XaHp =X, inparticular SpHp =S ;
XAHabt =cp X and SpHabf # S
XaHrab =cp X and S3Hpmp # S
(ii) For all A-terms M and for Hg or Hypr or Hpp: M3 =g M.

The proof for H,ppis in HS[1986] §§9.20-28, and the others are similar; see
HS([1986] §9.35 for hints on the proof for Hg.

3. INTERSECTION TYPES FOR CL-TERMS.

We introduce now an assignment of intersection types to CL-terms which can be
viewed as a translation of TAj; (A,»,<) into combinatory logic. Its relation to
TA; (A,0,<) will be precisely stated in Theorem 3.3.

In this section, type-assignment statements have form X:oc whereXisa
CL-term. Bases are sets {x:01, X2:09, ...} with xq, Xy, ... distinct, as usual.

3.1 DEFINITION. (i) TAcpp(A,0,2) is the system whose rules are (- E), (AD),
(AE), (<), and whose axiom-schemes are (®) and
(») Lo-oo,
(»K) K:o-1-0,
(»8) S:(o-1-p)a(d-T1)>0-p.
(ii) We write B l-¢, X:0 if X:0 is derivable from the basis B in this system.

186

3.2 LEMMA. (i) B,x0 lcoxT1 = 0<T.
(ii) Let A* beanyof AN, AB, aabl afab. Then
B,xc b Y:T = Bl (A*xY):0-T.

Proof. (i) By an easy induction on deductions.
(ii) Induction on the deduction of Y:t. We will prove the result for all four

A*s at once, and will use the induction hypothesis for AN in proving the induction
step for AB.

Casel: Y:tisxio. .. Y=x, . A" Y =l. Butl:o -0 is an axiom.

Case 2: Y:t iseitherinB, oris an §, K or | axiom, or an w-axiom with Y an atom
#x. . Yisanatom andx € FV(Y), soA*.Y =KY. Hence, by the axiom
K:1>0 -1 andrule (»E), B¢ KY: o1,

Case 3: Y:1 is an w-axiom. .. T =®. Now (A*x.Y):0 is an w-axiom. And, since
0 <, wehave ® € @-w® < 0 »w. Hence (A*x.Y):0 - by rule (<).

Case 4: The last step in the deduction of Y:7 is (<) or (AE):

Then (¢ -p) < (6 = 1), so we use the induction hypothesis and rule (<).

Case 5: Rule (AI):

Y:t1 Y:Tz

(t= ‘[lA‘fz)
Y:(TATy) .
By induction hypothesis, B ¢y (A*x.Y):0 ~»1; fori=1,2. But (0-11)AC>T9) <
o »(11AT3), sorules (A) and (<) give the result.

Case 6: Rule (»E): Say Y = UV, and we have:

B X0 B X:o

U:b-»r \}:p

UVt .

187

Subcase 6a: x ¢ FV(UV) and A*x.(UV) =K(UV). Since x¢ FV(UV), x
cannot occur in the given deduction. HenceB -¢; UV:t. So by the axiom
K:t-+0 -1 andrule (5E), B¢ K(UV):o-1.

Subcase 6¢c: V=x, x¢ FV(U), and 2*x.(UV) = U. Since B, x:0 |- x:p, we
havead <pby Q). .. (p->1) < (o->71). But B¢ Ui(p->1) since x & FV(U); hence
by (<), B¢y Ui(o »7).

Subcase 6f: A*x.(UV) =S A*x. U)(A*'x.V) (where A* is A*if A*is AN or Aabfor
Afab, but A* is AT if A* is AB). By induction hypothesis for A*, we have B ¢y,

(A*x.U):0-2p>7, Bl (A*x.V):05p. Hence the result, by an $-axiom and
(-E). O

3.3 THEOREM. (i) Bl Xt & Bl X;:1.
(i) By Mit = Bl Myt for Hy, Hg, Happ Hegp

(iii) For Hp, Hypp, Hyp, we also have the converse of (ii).

Proof. We prove all parts together. (i) "= " is trivial.
(ii): Inductionon -3 . The only difficult case is rule (»I), which comes by
Lemma 3.2.
(iii): Let H be any of Hg, Hayp, Hyap, and let B¢ Mpit. S by (D=,
B Mya:t. But My =g M by Lemma 2.3(ii). .. by Thearem 1.5(i), B - M:t.
()"¢<": Let Bl X3:t. Then Blcy XpHp:t by (ii). .. Bl Xt
because X3 Hp = X by Lemma 2.3(1). 0O

Note that Theorem 3.3(iii) does not hold for Hy. A counter-example is M =
Axy.xy; wehave MHy =1 which has type ¢ ¢ in the CL-system (¢ being a
type-variable), but it can be shown that M does not have this type in the 2 -system.

The following theorem shows that TAgpg(A,0,<) is invariant under B-equality

and n -reduction.

3.4 THEOREM. () IfBl¢pX:t and Y =¢3 X, then Bl Y:1.
(i) IfB,z:0bcLYz:tand z¢ FV(Y) and z isnot inB, then Bl Y:(c-1).

188

Proof. (i): By 3.3(1), (iii) and 1.53i).
(ii) Induction on the deduction of Yz:t, as follows.
Axioms: Yz:t cannotbe an S, K, 1-axiom. The only possibility is an w-axiom,
witht = w. Butw < w-w < 0 -»w (since 0 <), so we have

(w)-ax
Y:w
(W <T-w)
Y:(og-w) .
Rule (»E): Say we have, for some p,

Yipot z:p
Yz:1.
But z:p is deduced from B, z:0 and z does not occur in B. Hence o < p by 3.2¢1).
SApo1) < (6-1), soby Y:(p-1) andrule (<), B¢ Y:(o-1).
Rule (<) or (AE): Say we have
Yz:p
Yzt .
By induction hypothesis, B ¢, Y:(o-»p). Hence, by (<), B¢ Y:(o>1).
Rule (Al): Say 1 = (13A12) and we have

(p=<1)

Yz:1f1 Yz:r2

Yz: (TIATz) .

By induction hypothesis, B ¢y Y:(o»1y), i=1,2. .. by (AI) and (<), since
(G > TP »Tg) £ 0(T1ATy), wehave B¢ Y:0(T3ATo). o

3.5 NOTE. Following H[1982], let us define the set NTS of Normal Types tobe
the set of all types o such that: either ¢ =@ or ¢ = g jA...AC, with some

bracketing and with each o'; having the form ¢ ;... 20 m¢y=9; . Normal types
corresponded closely to the types in CDV[1981], which were slightly more restricted
than those in BCD[1983] and later papers, including this one. InH[1982] it was
proved that the restriction was trivial, in the sense that every deduction B - M:t
could be paralleled by a deduction B* -3 M:1* containing only normal types, where
the map * T-NTS applied to a type gave its "normal form". But in CL the

189

restriction seems not to be so trivial. For example, in CL there is a problem with
the axiom l:(c A1) 5 (cAT). The type in this is not normal, and the nearest normal
type to it is ((GAT)->0d)A((aAT)-71). Soif types were restricted to being normal,
quite a complicated form of the axiom scheme for | would be needed to give a
reasonable equivalence to the A-system. Similarly for § and K.

4. REPLACING RULE (x).

In this section we propose an alternative formulation of intersection type-
assignment to CL-terms in which rule (<) has been replaced by something simpler.
Let B = S(KS)X and B’ = SB(KI).

4.1 DEFINITION. (i) TAcpp(A,0,1) is the system for CL-terms whose axiom-

schemes are (@), (1), (sK), (+8) and

ap lLo-sw

()] Lo (w-0)

as) I:(c1A09) »0; (i=12)
ap 1:((6 > T)A(T 5p)) = (0 > (TAP))

and whose rules are (»E), (AD, (AE) and

IX:0o Bl:o B'l.o
a) — n,) — n,)
S X:o 1 l:o 2

l:o
(ii) We write B l-cyy X:o if X:o is derivable from the basis B in this system.

We shall prove that TA¢rg(A,0,<) and TAgpg(A,0,1) are equivalent.

42LEMMA. Ifc <o', then by l:o-0".

Proof. Induction on the proof of 6< ¢'. We consider only the non-trivial cases.
Axiom o < gAC.

190

(N-ax -ax
l.o >0 lo»o
(,)-ax (AD)
1:((c0»0)A (0 +6))»0 2 (0A0T) (o ~»0)A(0»0)
(»E)
ll:0+(oA0)
(I5)

l:gs(oA0) .

Transitivity: Suppose l:0 -1 and 1:1-p. Deduce l:c-p thus:

B:(tap)a(o-1)a0-p l:tsp
(-E)

Bl: (0~»1)oa0~p

l:(021)204p R 1) [H 4
- ()

I:o-p

(N3]
llo-sp . 5

Replacement in A. Assumel:0»0"' and 1:1-71'. Deduce l:(gAT) 2 (0°AT") thus:

B:(c»0")»((0A1)>0)(0AT)>06" Lioo0’

(-E)
Bl:((gAT)30)»(0AT) >0’
) (Ig)-ax

1:((0AT)»0) = (oAT)0" 1 L (ocAT) 0 .

(-BE) .
II:(crA't)-»cr‘(I SIMILAR
-) —_—
L(oAT)»0" O L(oAT) ST

(I4)-ax (A

Lo AT) 50)A(CAT) 5T)+ (TAT) » (0'AT) L:((0AT) 0)A((OAT)»T") E
(-E)

Il: (cAT) =2 (a’AT")

_——— 5)
I: (cAT) 2 (0'AT") .

Replacementin ». Assumel:o»0'andl:t»>1". Deducel:(c'-»1)-(0-1")
as follows. In this deduction, let € = (g ~»1), n=(g-1"), and { =(’'>7).

B:(1o1)a(0+1)20+7 Ltot

(-E)
Bl: (c»1)»0 —bt'()
n
B:(E - n)-(L+E)L =1 1€ ! B'(0-0)(0'+1)20 T oo’
-E (=E)

Bl:({28)-2t -0 B'l:(c'41)40 -1

—— () (“2)

L 28)sL - [RE24

(-E)
"ZC-)I]
(I

g . 5 a

191

4.3 THEOREM. Bl X:o & Bl Xo.

Proof. "=»": The only thing to show is that (<) is an admissible rule in
TAcrp(A.0,n); thatis, to show thatif B -cyy X:0' and ¢ <7, then Blcpq X:it.

By Lemma 4.2, l-cpp l:o 1. Then we can deduce

Lot X:.o
(-E)

IX:t ,
—
Xit. 9

"&<": Immediate from 3.4(¢i). 0O

4.4 NOTE. Rule (<) can also be replaced by a strengthened l-axiom-scheme
saying l:o-1 (0 < 1), and anl-rule:

IX:o

Xwo .

Using this axiom-scheme and rule, we get X:0 - X:t when ¢ < 1, as follows:

lost X:.o
(-E)

IX:t

Xt .

Conversely, the axiom and I-rule are easily proved admissible in TA¢pp(A,0,5).

192

REFERENCES.

BCDI[1983] Barendregt, H.P., Coppo, M., Dezani-Ciancaglini, M., A filter
lambda model and the completeness of type assignment, J. Symbolic
Logic 48, 931-940.

CDHLI[1983] Coppo, M., Dezani-Ciancaglini, M., Honsell, F., Longo, G.,
Extended type structures and filter lambda models, in Logic
Colloquium ‘82, ed. G. Longo et al., North-Holland Co., 241-262.

CDVI1981] Coppo, M., Dezani-Ciancaglini, M., Venneri, B., Functional
characters of solvable terms, Zeit. Math. Logik 27, 45-38.

CDZ[1987] Coppo, M., Dezani-Ciancaglini, M., Zacchi, M., Type-theories,
normal forms and D,-A-models, Information and Computation 72,
85-116.

H[1982] Hindley, J.R., The simple semantics for Coppo-Dezani-Sallé
types, LNCS 137, Springer-Verlag, 212-226.

H{1988] Hindley, J. R., Coppo-Dezani-Sallé types in lambda-calculus, an
introduction, MS, Maths. Divn., University College, Swansea SA2 8PP, U.K.

HS[1986] Hindley, J.R., Seldin, J.P., Introduction to combinators and A-calculus ,
Cambridge University Press.

R[1988] Reynolds, J.C., Preliminary design of the programming language
Forsythe, Report CMU-CS-88-159, Computer Science Dept., Carnegie-Mellon
University, Schenley Park, Pittsburgh , U.S.A.

