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ABSTRACT.

Two different translations of the usual formulation of intersection types for
A-calculus into combinatory logic are proposed; in the first one the rule (<) is
unchanged, while in the second one the rule (<) is replaced by three new rules and
five axiom-schemes, which seem to be simpler than rule (<) itself.

INTRODUCTION.

Intersection types were introduced as a generalization of the type discipline of
Church and Curry, mainly with the aim of describing the functional behaviour of all
solvable A-terms. The usual -»-based type-language for A-calculus was extended by
adding a constant @ as a universal type and a new connective A for the intersection
of two types. With suitable axioms and rules to assign types to A-terms, this gave a
system in which (i) the set of types given to a A-term does not change under
B-conversion, and (ii) the sets of normalizing and solvable A-terms can be
characterized very neatly by the types of their members. (CDVI[1981] gives an
introduction and motivation of A and @, and BCD[1983] gives a summary of all the
most basic syntactic properties of the system.)

Moreover, in the new type-language we can build A-models (filter models) in
which the interpretation of a A-term coincides with the set af all types that can be
assigned to it. Filter models turn out to be a very rich class containing in particular
each inverse-limit space, and have been widely used to study properties of
Do -A-models; see BCD[1983], CDHL[1983] and CDZ[19871.

More recently, intersection types have been introduced in the programming
language Forsythe, which is a descendent of Algol 60, to simplify the structure of
types; see R[1988].

Systems of combinators are designed to perform the same tasks as systems of
A-calculus, but without using bound variables. Curry's type discipline turns out to
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be significantly simpler in combinatory logic than in A-calculus. (For an
introduction see HS[1986] Chapter 14.)

We propose here two different formulations of intersection types for combinatory
logic. They are both essentially just translations of the A-calculus system presented
in BCD[1983], and have all the properties one would expect. However, there is at
least one extra complication in combinatory logic. In the case of A-calculus, the
type-assignment rule (<) is well known to be replaceable by the simpler rule (1)
(§1 below). But in combinatory logic some more care must be taken in choosing a
rule to replace rule (<), and we do not know whether the second system we present
below is the simplest possible (see §4).

For background A-calculus, combinatory logic and type-theory, HS[1986] will
be used as a basic reference.

1. INTERSECTION TYPES FOR A-CALCULUS.

We introduce the intersection type-assigment system following BCD[1983],
H[1982] and H[1988].

1.1 DEFINITION. (i) The set T of intersection types is inductively defined by:
¢9, ¢1, ... € T (type-variables)
weT (type-constant)
g,TeT = (o-1)e T, (car)eT.
(ii) A (type-assignment) statement is of the form M:o withoc € Tand M a
A-term, called its subject. A basisB is a set of statements with only distinct
variables as subjects. If x does not occur in B, then "B, x:0" denotes Bu{x:a}.

On intersection types we define a pre-order relation which formalizes the subset
relation and will be used in a type-assignment rule.

1.2 DEFINITION. The < relation on intersection types is inductively defined by:

1T, T < TAT,

T<W, GAT <O, OATEST,
WS-, (0-»pIAM(0-1T) < 0-(pAT),
o<psT = 0xT,

<0, TST = OAT <C'AT',
<G, 1T = 0'51<0-17".
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1.3 DEFINITION. (i) TAj;(A,0,<) is the type assignment system defined by the
following natural-deduction rules and axioms.

Axioms (w): M:o (one axiom for each A-term M).
Rules:
[x:0]
Mzr Moot N:o
oD —m — ™ (-E)
Ax.MooT1 MN:t
M:o M:t M:o At M:oat
) — (AE)
M:oat M:o M:t
M:o o<t
(2)
M:t

(*) if x is not free in assumptions above M:t, other than x:o.

(ii) We write B}y M:o if M:o is derivable from the basis B in this
system.

The main syntactic property of this type system is the following theorem of
invariance under B-equality and n-reduction. (For a proof see CDV[1981] Lemma
1 and Theorem 1, or H[1982] §5.)

1.5 THEOREM. (i) TAj;(A,0,s) isinvariant under B-equality ; thatis, if M =g
N and BF) M:o, then B3 N:o.

(ii) TA)(A,0,<) isinvariant under n-reduction; thatis, if z ¢ FV(M) andz
does not occur inB, and B, z:0 ) Mz:t, then B3 M:(o-»1).

The invariance under n -reduction allows a replacement of rule (<) which
preserves type assignment, as follows.
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1.6 DEFINITION. (i) LetTA;(A,»,n) be the type-assigment system obtained
from TA; (A,w,<) by replacing rule (<) by

(Ax.Mx):0
(n) ———— (ifxis notfree in M)
Mo .

(ii) Let B3y M:o denote derivability in the resulting system.

1.7 THEOREM. TA;(A,w,<) and TA;(A,0,n) are equivalent; that is,
BHyMioc & Bl Mo,

This equivalence can be proved directly fairly easily, or by using BCD[1983] (in
particular Lemma 4.2, Remark 2.10, and the remark just before 4.3).

2. CORRESPONDENCE BETWEEN A AND CL.

The reader is assumned to know at least the basic definitions of combinatory
logic (see Chapter 2 of HS[1986]). The atomic combinators are assumed here to
be s, K, 1.

2.1 DEFINITION (Abstraction in Combinatory Logic ).
(i) A functional (fnl) term is any of $, $X, SXY, K, KX, 1 (for any X,Y).
(ii) We present four alternative definitions for A*x.X. (The second one has
been discussed in HS[1986] §§9.34-35, and the other three are common in the
literature. Note that the definition of AB uses AN.)

AN (a) AxY
(b) ANMx.x 1,
(c) AMx.Ux= U if x¢ FV(U),
() AMx.UV= $(ANx.U)(ANx.V) if(a)-(c) do not apply.

KY if x ¢ FV(Y),

AB:  (a), (b) asabove,
(cg) ABx.Ux = U ifx¢ FV(U) and U is fl,
(fp) ABx.UV= $(ANx U)(ANx.V) if (a)-(c) donot apply.

A3bl : (a), (b) as above, and () used when (a) and (b) do not apply.
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Afab . () Afabx UV = $(Afabx U)(afabx.V),
(a) Afabxy = Ky if yisan atom distinct from x,
(b) Afabx.x = I

2.2 DEFINITION (H-transformations ). Each abstraction determines an H-
mapping from A-calculus to combinatory logic: (Ax.M)y =A*x.(My). (Details are
in HS[1986] Chapter 9.) We call these mappings Hg, Hy, Habp Hiap,.

Let X3 denote the A-term associated in the standard way with the CL-term X,
and let =¢ denote combinatory B-equality (i.e. X=¢pY < Xp=pY3).

2.3 LEMMA. (i) For all CL-terms X:
XAHn =X, inparticular S)Hn =$;
XaHp =X, inparticular SpHp =S ;
XAHabt =cp X and SpHabf # S
XaHrab =cp X and S3Hpmp # S
(ii) For all A-terms M and for Hg or Hypr or Hpp: M3 =g M.

The proof for H,ppis in HS[1986] §§9.20-28, and the others are similar; see
HS([1986] §9.35 for hints on the proof for Hg.

3. INTERSECTION TYPES FOR CL-TERMS.

We introduce now an assignment of intersection types to CL-terms which can be
viewed as a translation of TAj; (A,»,<) into combinatory logic. Its relation to
TA; (A,0,<) will be precisely stated in Theorem 3.3.

In this section, type-assignment statements have form X:oc whereXisa
CL-term. Bases are sets {x:01, X2:09, ...} with xq, Xy, ... distinct, as usual.

3.1 DEFINITION. (i) TAcpp(A,0,2) is the system whose rules are (- E), (AD),
(AE), (<), and whose axiom-schemes are (®) and
(») Lo-oo,
(»K) K:o-1-0,
(»8) S:(o-1-p)a(d-T1)>0-p.
(ii) We write B l-¢, X:0 if X:0 is derivable from the basis B in this system.
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3.2 LEMMA. (i) B,x0 lcoxT1 = 0<T.
(ii) Let A* beanyof AN, AB, aabl afab. Then
B,xc b Y:T = Bl (A*xY):0-T.

Proof. (i) By an easy induction on deductions.
(ii) Induction on the deduction of Y:t. We will prove the result for all four

A*s at once, and will use the induction hypothesis for AN in proving the induction
step for AB.

Casel: Y:tisxio. .. Y=x, . A" Y =l. Butl:o -0 is an axiom.

Case 2: Y:t iseitherinB, oris an §, K or | axiom, or an w-axiom with Y an atom
#x. . Yisanatom andx € FV(Y), soA*.Y =KY. Hence, by the axiom
K:1>0 -1 andrule (»E), B¢ KY: o1,

Case 3: Y:1 is an w-axiom. .. T =®. Now (A*x.Y):0 is an w-axiom. And, since
0 <, wehave ® € @-w® < 0 »w. Hence (A*x.Y):0 - by rule (<).

Case 4: The last step in the deduction of Y:7 is (<) or (AE):

Then (¢ -p) < (6 = 1), so we use the induction hypothesis and rule (<).

Case 5: Rule (AI):

Y:t1 Y:Tz

(t= ‘[lA‘fz)
Y:(TATy) .
By induction hypothesis, B ¢y (A*x.Y):0 ~»1; fori=1,2. But (0-11)AC>T9) <
o »(11AT3), sorules (A) and (<) give the result.

Case 6: Rule (»E): Say Y = UV, and we have:

B X0 B X:o

U:b-»r \}:p

UVt .
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Subcase 6a: x ¢ FV(UV) and A*x.(UV) =K(UV). Since x¢ FV(UV), x
cannot occur in the given deduction. HenceB -¢; UV:t. So by the axiom
K:t-+0 -1 andrule (5E), B¢ K(UV):o-1.

Subcase 6¢c: V=x, x¢ FV(U), and 2*x.(UV) = U. Since B, x:0 |- x:p, we
havead <pby Q). .. (p->1) < (o->71). But B¢ Ui(p->1) since x & FV(U); hence
by (<), B¢y Ui(o »7).

Subcase 6f: A*x.(UV) =S A*x. U)(A*'x.V) (where A* is A*if A*is AN or Aabfor
Afab, but A* is AT if A* is AB). By induction hypothesis for A*, we have B ¢y,

(A*x.U):0-2p>7, Bl (A*x.V):05p. Hence the result, by an $-axiom and
(-E). O

3.3 THEOREM. (i) Bl Xt & Bl X;:1.
(i) By Mit = Bl Myt for Hy, Hg, Happ Hegp

(iii) For Hp, Hypp, Hyp, we also have the converse of (ii).

Proof. We prove all parts together. (i) "= " is trivial.
(ii): Inductionon -3 . The only difficult case is rule (»I), which comes by
Lemma 3.2.
(iii): Let H be any of Hg, Hayp, Hyap, and let B¢ Mpit. S by (D=,
B Mya:t. But My =g M by Lemma 2.3(ii). .. by Thearem 1.5(i), B - M:t.
()"¢<": Let Bl X3:t. Then Blcy XpHp:t by (ii). .. Bl Xt
because X3 Hp = X by Lemma 2.3(1). 0O

Note that Theorem 3.3(iii) does not hold for Hy. A counter-example is M =
Axy.xy; wehave MHy =1 which has type ¢ ¢ in the CL-system (¢ being a
type-variable), but it can be shown that M does not have this type in the 2 -system.

The following theorem shows that TAgpg(A,0,<) is invariant under B-equality

and n -reduction.

3.4 THEOREM. () IfBl¢pX:t and Y =¢3 X, then Bl Y:1.
(i) IfB,z:0bcLYz:tand z¢ FV(Y) and z isnot inB, then Bl Y:(c-1).
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Proof. (i): By 3.3(1), (iii) and 1.53i).
(ii) Induction on the deduction of Yz:t, as follows.
Axioms: Yz:t cannotbe an S, K, 1-axiom. The only possibility is an w-axiom,
witht = w. Butw < w-w < 0 -»w (since 0 < ), so we have

(w)-ax
Y:w
(W <T-w)
Y:(og-w) .
Rule (»E): Say we have, for some p,

Yipot z:p
Yz:1.
But z:p is deduced from B, z:0 and z does not occur in B. Hence o < p by 3.2¢1).
SApo1) < (6-1), soby Y:(p-1) andrule (<), B¢ Y:(o-1).
Rule (<) or (AE): Say we have
Yz:p
Yzt .
By induction hypothesis, B ¢, Y:(o-»p). Hence, by (<), B¢ Y:(o>1).
Rule (Al): Say 1 = (13A12) and we have

(p=<1)

Yz:1f1 Yz:r2

Yz: (TIATz) .

By induction hypothesis, B ¢y Y:(o»1y), i=1,2. .. by (AI) and (<), since
(G > TP »Tg) £ 0(T1ATy), wehave B¢ Y:0(T3ATo). o

3.5 NOTE. Following H[1982], let us define the set NTS of Normal Types tobe
the set of all types o such that: either ¢ =@ or ¢ = g jA...AC, with some

bracketing and with each o'; having the form ¢ ;... 20 m¢y=9; . Normal types
corresponded closely to the types in CDV[1981], which were slightly more restricted
than those in BCD[1983] and later papers, including this one. InH[1982] it was
proved that the restriction was trivial, in the sense that every deduction B - M:t
could be paralleled by a deduction B* -3 M:1* containing only normal types, where
the map * T-NTS applied to a type gave its "normal form". But in CL the
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restriction seems not to be so trivial. For example, in CL there is a problem with
the axiom l:(c A1) 5 (cAT). The type in this is not normal, and the nearest normal
type to it is ((GAT)->0d)A((aAT)-71). Soif types were restricted to being normal,
quite a complicated form of the axiom scheme for | would be needed to give a
reasonable equivalence to the A-system. Similarly for § and K.

4. REPLACING RULE (x).

In this section we propose an alternative formulation of intersection type-
assignment to CL-terms in which rule (<) has been replaced by something simpler.
Let B = S(KS)X and B’ = SB(KI).

4.1 DEFINITION. (i) TAcpp(A,0,1) is the system for CL-terms whose axiom-

schemes are (@), (1), (sK), (+8) and

ap lLo-sw

()] Lo (w-0)

as) I:(c1A09) »0; (i=12)
ap 1:((6 > T)A(T 5p)) = (0 > (TAP))

and whose rules are (»E), (AD, (AE) and

IX:0o Bl:o B'l.o
a) — n,) — n,)
S X:o 1 l:o 2

l:o
(ii) We write B l-cyy X:o if X:o is derivable from the basis B in this system.

We shall prove that TA¢rg(A,0,<) and TAgpg(A,0,1) are equivalent.

42LEMMA. Ifc <o', then by l:o-0".

Proof. Induction on the proof of 6< ¢'. We consider only the non-trivial cases.
Axiom o < gAC.
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(N-ax -ax
l.o >0 lo»o
(,)-ax (AD)
1:((c0»0)A (0 +6))»0 2 (0A0T) (o ~»0)A(0»0)
(»E)
ll:0+(oA0)
(I5)

l:gs(oA0) .

Transitivity: Suppose l:0 -1 and 1:1-p. Deduce l:c-p thus:

B:(tap)a(o-1)a0-p l:tsp
(-E)

Bl: (0~»1)oa0~p

l:(021)204p R 1) [H 4
- ()

I:o-p

(N3]
llo-sp . 5

Replacement in A. Assumel:0»0"' and 1:1-71'. Deduce l:(gAT) 2 (0°AT") thus:

B:(c»0")»((0A1)>0)(0AT)>06" Lioo0’

(-E)
Bl:((gAT)30)»(0AT) >0’
) (Ig)-ax

1:((0AT)»0) = (oAT)0" 1 L (ocAT) 0 .

(-BE) .
II:(crA't)-»cr‘(I SIMILAR
- ) —_—
L(oAT)»0" O L(oAT) ST

(I4)-ax (A

Lo AT) 50 )A(CAT) 5T )+ (TAT) » (0'AT) L:((0AT) 0 )A((OAT)»T") E
(-E)

Il: (cAT) =2 (a’AT")

_——— 5)
I: (cAT) 2 (0'AT") .

Replacementin ». Assumel:o»0'andl:t»>1". Deducel:(c'-»1)-(0-1")
as follows. In this deduction, let € = (g ~»1), n=(g-1"), and { =(’'>7).

B:(1o1)a(0+1)20+7 Ltot

(-E)
Bl: (c»1)»0 —bt'( )
n
B:(E - n)-(L+E)L =1 1€ ! B'(0-0)(0'+1)20 T oo’
-E (=E)

Bl:({28)-2t -0 B'l:(c'41)40 -1

—— () (“2)

L 28)sL - [RE24

(-E)
"ZC-)I]
(I

g . 5 a
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4.3 THEOREM. Bl X:o & Bl Xo.

Proof. "=»": The only thing to show is that (<) is an admissible rule in
TAcrp(A.0,n); thatis, to show thatif B -cyy X:0' and ¢ <7, then Blcpq X:it.

By Lemma 4.2, l-cpp l:o 1. Then we can deduce

Lot X:.o
(-E)

IX:t ,
—
Xit. 9

"&<": Immediate from 3.4(¢i). 0O

4.4 NOTE. Rule (<) can also be replaced by a strengthened l-axiom-scheme
saying l:o-1 (0 < 1), and anl-rule:

IX:o

Xwo .

Using this axiom-scheme and rule, we get X:0 - X:t when ¢ < 1, as follows:

lost X:.o
(-E)

IX:t

Xt .

Conversely, the axiom and I-rule are easily proved admissible in TA¢pp(A,0,5).
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